Product Description
With a capable machining team and comprehensive knowledge of materials, advanced machineries and facilities, Energetic Industry served clients in broad field.
We can produce precision machining parts according to your idea, not only for material choosing, but also property requirements and shapes.
1. Customized material
Materials Available | General Plastic: HDPE, PP, PVC, ABS, PMMA(Acrylic) ect. |
Engineering Plastic: POM, PA6, MC nylon, Nylon 66, PTFE, UHMWPE,PVDF ect. | |
High Performance Plastic: PPS, PEEK, PI, PEI ect. | |
Thermosetting Plastic: Durostone, Ricocel sheet, G10, FR4, Bakelite ect. | |
Spcial Plastic Material: Plastic +GF/CA/Oil/Brone/Graphit/MSO2/ceramic ect. | |
Spcial Plastic Plastic Alloy: PE+PA, PP+PA, POM + PTFE ect. | |
Metals: Carbon Steel, SS Steel, Brass, Iron, Bronze, Aluminum, Titanium | |
Special parts: Metal + Plastic Combined Part |
2. Customized property
ESD, conductive, hardness, wear resistance, fire-resistant, corrosion resistance, impact strength, work temperature, UV resistant ect.
3. Customized shape with drawing
Gear, rollers, wheels, base part, spacers, blade, liner, rack, bearings, pulley, bearing sleeves, linear guide rail, sliding block, guide channel, spiral, washer, positioning strip, joint, sheath, CHINAMFG plate, retaining ring, slot, skating board, frame, cavity parts, CHINAMFG jig and fixture, PCB solder pallet, profiles.
Molds, cavity, Radiator fin, prototype, outermost shell, fittings and connectors, screws , bolt …
Further services of CNC machining:
Processing: Cutting, CNC machining, CNC milling and turning, drilling, grinding, bending, stamping, tapping, injection
Surface finish: Zinc-plated, nickel-plated, chrome-plated, silver-plated, gold-plated, imitation gold-plated
Application Field:
- Electronic and electrician
- Physical and Electronic Science Research
- Mineral and coal
- Aerospace
- Food processing
- Textile printing & dyeing industry
- Analytical instrument industry
- Medical device industry
- Semi conductor, solar, FPD industry
- Automotive industry
- Oil & Gas
- Automobile
- Machinery and other industrial ect.
Material: | PA |
---|---|
Packing: | Thick Carton Boxes |
Production Time: | 3~25 Days |
Outstanding Property: | Good Wear Resistant |
Processing: | CNC Machining |
Color: | Natural, Black, Red, Green, Customized |
Samples: |
US$ 1/Piece
1 Piece(Min.Order) | |
---|
Customization: |
Available
| Customized Request |
---|
Can spur gears be used in precision manufacturing equipment?
Yes, spur gears can be used in precision manufacturing equipment. Here’s a detailed explanation:
Precision manufacturing equipment requires high accuracy, repeatability, and reliability to produce intricate and precise components. While other gear types like helical gears or bevel gears are commonly used in precision applications, spur gears can also be suitable in certain scenarios.
1. Low-Speed Applications:
Spur gears are well-suited for low-speed applications where high precision is required. In precision manufacturing equipment, such as milling machines, lathes, or grinding machines, where controlled and precise rotational motion is essential, spur gears can provide the necessary power transmission with accuracy.
2. Linear Actuators and Positioning Systems:
Spur gears can be used in linear actuators and positioning systems within precision manufacturing equipment. These systems require precise movement control, and spur gears can convert rotary motion into linear motion accurately. By incorporating precision-ground spur gears with proper backlash control, highly accurate positioning can be achieved.
3. Tooling Systems:
Spur gears are employed in tooling systems used in precision manufacturing equipment, such as indexing heads and rotary tables. These systems enable precise and repeatable positioning of workpieces or cutting tools. Spur gears with high precision tooth profiles and low backlash are utilized to ensure accurate tool positioning and consistent machining results.
4. Measuring and Inspection Equipment:
In precision manufacturing, gear systems are also utilized in measuring and inspection equipment. Spur gears can be incorporated into gear trains within instruments like coordinate measuring machines (CMMs) or optical comparators to translate linear or rotary motion into precise measurement data. The gear systems in these instruments require minimal backlash and high accuracy to ensure accurate measurements.
5. Customized Gear Systems:
In some cases, precision manufacturing equipment may require custom-designed gear systems to meet specific application requirements. Spur gears can be tailored and optimized for these custom gear systems, taking into account factors like gear tooth profile, material selection, and gear geometry. This allows for the creation of highly precise and specialized gear systems.
While spur gears have advantages in precision manufacturing equipment, it’s important to consider their limitations. Due to their design, spur gears may produce more noise and vibration compared to other gear types. Additionally, they are generally not suitable for high-speed or high-torque applications that demand continuous and smooth power transmission.
Overall, spur gears can be successfully used in precision manufacturing equipment for specific applications that require low-speed, precise motion control, accurate positioning, and measurement capabilities. Proper gear selection, high-quality manufacturing, and careful system integration are key to achieving the desired precision and performance in these gear applications.
Are spur gears suitable for high-torque applications?
Spur gears are commonly used in a wide range of applications, including those involving high-torque requirements. However, their suitability for high-torque applications depends on various factors. Here’s a detailed explanation:
Spur gears are designed to transmit power and torque between parallel shafts. They have straight teeth that engage fully, providing efficient power transfer. The suitability of spur gears for high-torque applications can be evaluated based on the following considerations:
- Load Distribution: Spur gears distribute the transmitted load over a larger contact area compared to other gear types. This characteristic allows them to handle higher torque loads effectively.
- Size and Diameter: The size and diameter of the spur gears play a crucial role in their ability to handle high torque. Larger gear diameters provide increased torque capacity due to the longer lever arm and larger contact area between the gear teeth.
- Material Selection: Choosing the appropriate material for the spur gears is essential for high-torque applications. Strong and durable materials, such as hardened steel or alloy steels, are commonly used to ensure the gears can withstand the high stresses and torque loads without deformation or failure.
- Gear Design: Proper gear design considerations, such as tooth profile, module or pitch, and the number of teeth, can impact the torque-carrying capacity of spur gears. Design parameters should be optimized to ensure sufficient tooth strength and minimize the risk of tooth breakage or excessive wear.
- Lubrication and Maintenance: Adequate lubrication is critical for reducing friction, wear, and heat generation in high-torque spur gear applications. Regular maintenance, including lubricant replacement and gear inspections, can help identify and address any issues that may affect the gear’s torque-handling capabilities.
- Supporting Components: The overall system design, including the selection of bearings, shafts, and housing, should be considered to ensure proper support and alignment of the spur gears. Well-designed supporting components contribute to the overall torque capacity of the system.
While spur gears can handle high torque, it’s important to note that there are limitations to their torque capacity. Factors such as gear size, material strength, tooth design, and operating conditions can affect the maximum torque the gears can safely transmit without failure.
In some cases, other gear types such as helical gears or bevel gears may be more suitable for specific high-torque applications. These gears offer advantages such as increased load-carrying capacity, improved torque transfer efficiency, and reduced noise and vibration levels.
Ultimately, the suitability of spur gears for high-torque applications should be evaluated based on the specific requirements, operating conditions, and industry standards applicable to the particular application.
What is a spur gear and how does it work?
A spur gear is a type of cylindrical gear with straight teeth that are parallel to the gear axis. It is one of the most common and simplest types of gears used in various mechanical systems. Spur gears work by meshing together to transmit rotational motion and torque between two parallel shafts. Here’s a detailed explanation of spur gears and how they work:
A spur gear consists of two or more gears with cylindrical shapes and an equal number of teeth. These gears are mounted on parallel shafts, and their teeth mesh together to transfer rotational motion from one gear to another. The gear with power input is called the “drive gear” or “driver,” while the gear receiving the power output is called the “driven gear” or “follower.”
The key characteristics and components of spur gears include:
- Teeth: Spur gears have straight teeth that are cut parallel to the shaft axis. The teeth are evenly spaced around the circumference of the gear. The number of teeth determines the gear ratio and affects the speed and torque transmission between the gears.
- Pitch Diameter: The pitch diameter is the theoretical diameter of the gear at the point where the teeth mesh. It is determined by the number of teeth and the module or diametral pitch of the gear.
- Module or Diametral Pitch: The module is a parameter used in metric gear systems, while the diametral pitch is used in imperial gear systems. They define the tooth size and spacing of the gear. The module is the ratio of the pitch diameter to the number of teeth, while the diametral pitch is the number of teeth per inch of pitch diameter.
- Pressure Angle: The pressure angle is the angle between the line tangent to the tooth profile at the pitch point and a line perpendicular to the gear axis. Common pressure angles for spur gears are 20 degrees and 14.5 degrees.
- Meshing: Spur gears mesh by engaging their teeth, creating a point or line contact between the contacting surfaces. The teeth transfer rotational motion and torque from the drive gear to the driven gear.
- Gear Ratio: The gear ratio is determined by the number of teeth on the drive gear and the driven gear. It defines the relationship between the input speed and the output speed. The gear ratio can be calculated by dividing the number of teeth on the driven gear by the number of teeth on the drive gear.
- Operation: As the drive gear rotates, its teeth come into contact with the teeth of the driven gear. The contact between the teeth transfers rotational motion and torque from the drive gear to the driven gear. The meshing teeth maintain a constant speed ratio, allowing for the transmission of power between the shafts. The direction of rotation can be changed by meshing gears with an odd or even number of teeth.
Spur gears offer several advantages, including simplicity, ease of manufacture, efficiency, and reliability. They are commonly used in a wide range of applications, including machinery, automotive systems, appliances, power tools, and more.
In conclusion, spur gears are cylindrical gears with straight teeth that mesh together to transfer rotational motion and torque between parallel shafts. Their simple and efficient design makes them a popular choice for various mechanical systems.
editor by CX 2023-09-21